Using Oscillating Sounds to Manipulate Sleep Spindles.

نویسندگان

  • James W Antony
  • Ken A Paller
چکیده

Introduction EEG oscillations known as sleep spindles have been linked with various aspects of cognition, but the specific functions they signal remain controversial. Two types of EEG sleep spindles have been distinguished: slow spindles at 11-13.5 Hz and fast spindles at 13.5-16 Hz. Slow spindles exhibit a frontal scalp topography, whereas fast spindles exhibit a posterior scalp topography and have been preferentially linked with memory consolidation during sleep. To advance understanding beyond that provided from correlative studies of spindles, we aimed to develop a new method to systematically manipulate spindles. Aims and Methods We presented repeating bursts of oscillating white noise to people during a 90-min afternoon nap. During stage 2 and slow-wave sleep, oscillations were embedded within contiguous 10-s stimulation intervals, each comprising 2 s of white noise amplitude modulated at 12 Hz (targeting slow spindles), 15 Hz (targeting fast spindles), or 50 Hz followed by 8 s of constant white noise. Results During oscillating stimulation compared to constant stimulation, parietal EEG recordings showed more slow spindles in the 12-Hz condition, more fast spindles in the 15-Hz condition, and no change in the 50-Hz control condition. These effects were topographically selective, and were absent in frontopolar EEG recordings, where slow spindle density was highest. Spindles during stimulation were similar to spontaneous spindles in standard physiological features, including duration and scalp distribution. Conclusions These results define a new method to selectively and noninvasively manipulate spindles through acoustic resonance, while also providing new evidence for functional distinctions between the 2 types of EEG spindles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر صدای طبیعت و سکوت بر کیفیت خواب بیماران بستری در بخش مراقبت‌ ویژۀ قلبی

Introduction: Nature sounds as non-pharmacological care can reduce environmental sounds to improve patients’ sleep quality. Therefore, the present study aimed at investigating the effect of listening to nature sounds on sleep quality in patients hospitalized in cardiac care unit. Methods: In this randomized clinical trial, 93 patients, admitted to the Cardiac Care Units (CCUs) of three t...

متن کامل

Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations.

STUDY OBJECTIVES Sleep is defined as a reversible state of reduction in sensory responsiveness and immobility. A long-standing hypothesis suggests that a high arousal threshold during non-rapid eye movement (NREM) sleep is mediated by sleep spindle oscillations, impairing thalamocortical transmission of incoming sensory stimuli. Here we set out to test this idea directly by examining sensory-ev...

متن کامل

The Fate of Incoming Stimuli during NREM Sleep is Determined by Spindles and the Phase of the Slow Oscillation

The present study aimed at identifying the neurophysiological responses associated with auditory stimulation during non-rapid eye movement (NREM) sleep using simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) recordings. It was reported earlier that auditory stimuli produce bilateral activation in auditory cortex, thalamus, and caudate during both wakefulness...

متن کامل

EEG topography during slow wave sleep, normative data and modifications induced by thalamic lesions

Introduction Recent studies brought us a lot of information about slow wave sleep physiological mechanisms and disclosed several oscillating elements integrated in networks whose functional properties are greatly modified by comparison with waking state. We used topographical quantified EEG analysis in order to study slow waves and spindles activities during sleep in the presence of thalamic le...

متن کامل

Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep.

Humans are less responsive to the surrounding environment during sleep. However, the extent to which the human brain responds to external stimuli during sleep is uncertain. We used simultaneous EEG and functional MRI to characterize brain responses to tones during wakefulness and non-rapid eye movement (NREM) sleep. Sounds during wakefulness elicited responses in the thalamus and primary audito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Sleep

دوره 40 3  شماره 

صفحات  -

تاریخ انتشار 2016